A Comparison of Well-Quasi Orders on Trees
نویسنده
چکیده
Citation for published version (APA): Mogensen, T. Æ. (2013). A comparison of well-quasi orders on trees. In A. Banerjee, O. Danvy, K-G. Doh, & J. Hatcliff (Eds.), Semantics, Abstract Interpretation, and Reasoning about Programs: essays dedicated to David A. Schmidt on the occasion of his sixtieth birthday, Manhattan, Kansas, USA, 19-20th September 2013 (pp. 30-40). (Electronic Proceedings in Theoretical Computer Science, Vol. 129). DOI: 10.4204/EPTCS.129.3
منابع مشابه
On Better-Quasi-Ordering Countable Series-Parallel Orders
We prove that any infinite sequence of countable series-parallel orders contains an increasing (with respect to embedding) infinite subsequence. This result generalizes Laver’s and Corominas’ theorems concerning better-quasi-order of the classes of countable chains and trees. Let C be a class of structures and ≤ an order on C. This class is well-quasi-ordered with respect to ≤ if for any infini...
متن کاملar X iv : 1 30 6 . 12 70 v 1 [ m at h . L O ] 6 J un 2 01 3 UNIVERSAL COUNTABLE BOREL QUASI - ORDERS
In recent years, much work in descriptive set theory has been focused on the Borel complexity of naturally occurring classification problems, in particular, the study of countable Borel equivalence relations and their structure under the quasi-order of Borel reducibility. Following the approach of Louveau and Rosendal for the study of analytic equivalence relations, we study countable Borel qua...
متن کاملWell - Quasi - Orders Christian
Based on Isabelle/HOL’s type class for preorders, we introduce a type class for well-quasi-orders (wqo) which is characterized by the absence of “bad” sequences (our proofs are along the lines of the proof of Nash-Williams [1], from which we also borrow terminology). Our main results are instantiations for the product type, the list type, and a type of finite trees, which (almost) directly foll...
متن کاملThe descriptive set-theoretical complexity of the embeddability relation on models of large size
We show that if κ is a weakly compact cardinal then the embeddability relation on (generalized) trees of size κ is invariantly universal. This means that for every analytic quasi-order on the generalized Cantor space 2 there is an Lκ+κsentence φ such that the embeddability relation on its models of size κ, which are all trees, is Borel bireducible (and, in fact, classwise Borel isomorphic) to R...
متن کاملUniversal Countable Borel quasi-Orders
In recent years, much work in descriptive set theory has been focused on the Borel complexity of naturally occurring classification problems, in particular, the study of countable Borel equivalence relations and their structure under the quasi-order of Borel reducibility. Following the approach of Louveau and Rosendal in [8] for the study of analytic equivalence relations, we study countable Bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013